Optimized on-chip ESD protection to enable high-speed Ethernet in cars.

In the past most Electronic Control Units (ECU) used CAN and LIN interfaces to connect to sensors, actuators and each other. However, the newest applications need (much) faster communication options. Gigabit automotive ethernet is pushed by many in the industry as the perfect solution.

With its local ESD clamp approach, Sofics provides the best solution to protect those high-speed chip interfaces against Electrostatic Discharge events.

Introduction: ESD protection concepts for I/Os

There are many different approaches to ensure effective ESD protection for integrated circuits. It is important to select the right approach for each interface and power domain. This article outlines the main options for Interface protection.

Protection of CMOS output drivers

Every computer chip needs on-chip ESD protection at its interfaces. Integrated circuits have different kinds of interfaces. This article discusses approaches to protect output drivers. This article compares different options for output drivers, focused on the NMOS transistor because that is the most sensitive part and is easily damaged during ESD stress.

Comparing 22nm CMOS, 22nm SOI and 16nm FinFET technology (part 1)

IC designers that develop a new integrated circuit have many different foundry and process options. There are several aspects that need to be considered to make a rational decision and select the optimal process. One of those items is on-chip Electrostatic Discharge (ESD) protection. This article compares the properties of the major ESD device types for 3 process options: CMOS (22nm), thin-film FD-SOI (22nm) and first generation FinFET (16nm) technology.

ESD protection of interfaces with thin gate oxide transistors

How do you protect chip interfaces that require thin gate (core) transistors in advanced CMOS, SOI of FinFET processes? How do you ensure sufficient ESD robustness? Conventional ESD protection is not sufficient. Discover the background for that and a solution as well in this article. The answer is found in a strategy of local clamping with power-efficient devices.

ESD protection for 2.5D and 3D packages

A growing number of semiconductor applications are turning to 2.5D and 3D integration. Integrating multiple dies in a single package can reduce total power consumption, reduce required PCB area, enhance performance and it can speed up development cycles.

It is important to consider Electrostatic Discharge (ESD) protection early in the design phase. The 2.5D and 3D hybrid integration introduces new ESD challenges but also opportunities.

6 concepts to replace dual diode ESD protection

When the conventional dual diode based ESD protection is causing problems ESD designers can use one of these 6 concepts.

Local ESD protection in analog IOs

The most common ESD protection for I/Os consist of two diodes. To cover all the different stress combinations a rail clamp is required. In this article we discuss another option. For many interfaces a local ESD protection clamp is actually a better option.